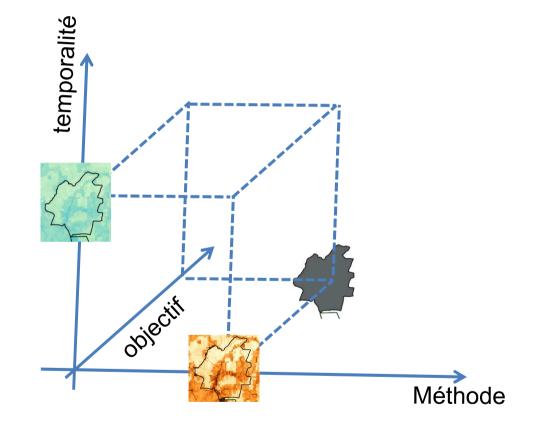
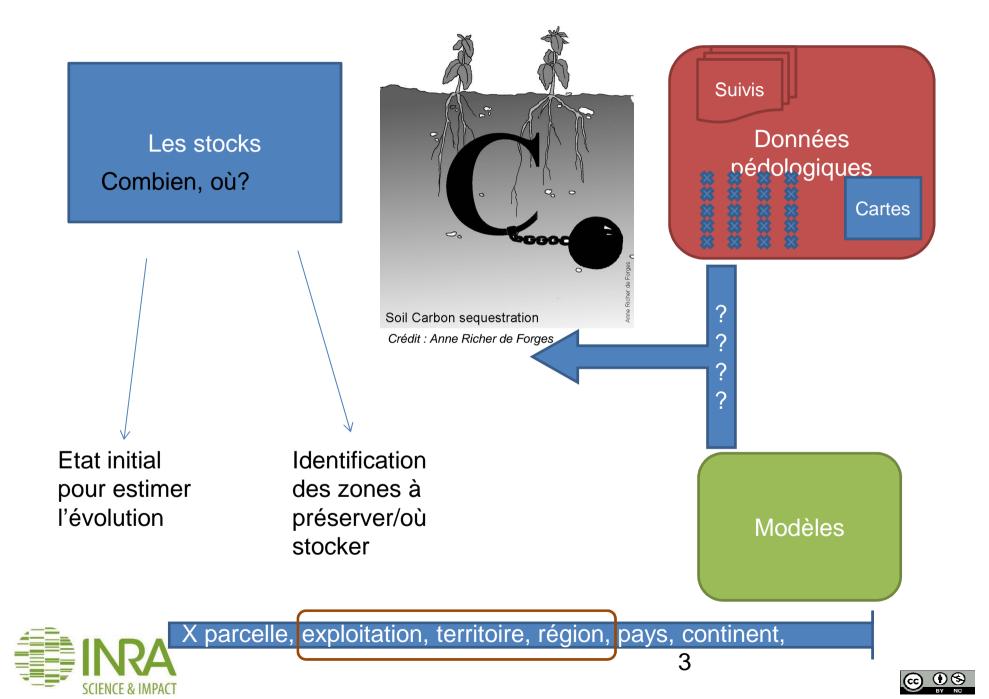
Besoins en données-sol pour la gestion du carbone organique des sols à l'échelle des territoires, dans la perspective du 4 p 1000 - point de vue de(s) producteurs (et des modélisateurs) -

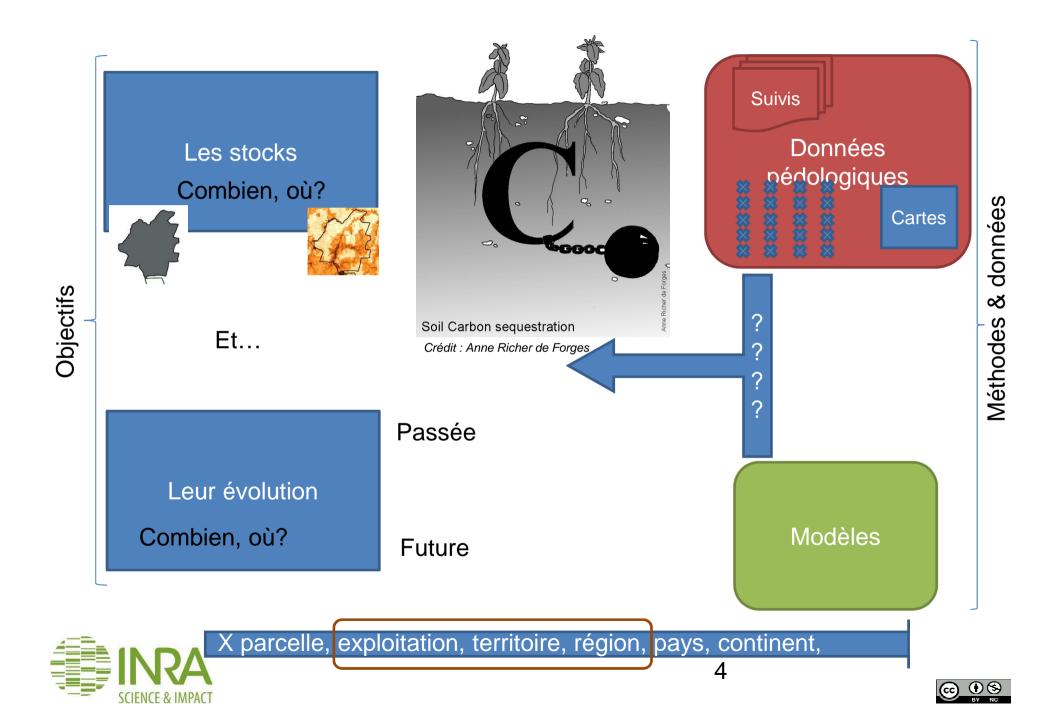
M. Martin¹, A. Duparque², O. Scheurer³ &N. Saby¹

1: INRA Infosol


2: Agrotransfert -RT

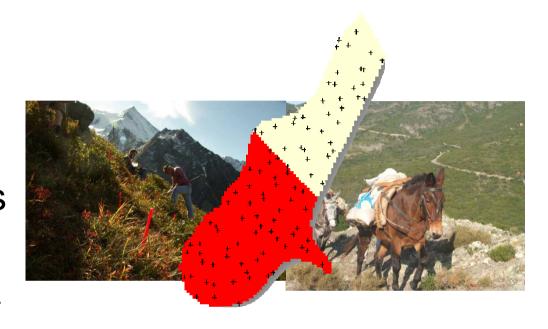
3: UniLaSalle

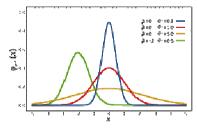


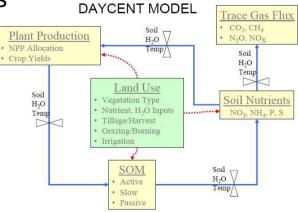

I. Introduction

Plan de la présentation

- 1. Méthodes d'estimation
 - 1. Directes (dépendant uniquement du plan d'échantillonnage)
 - 2. Indirectes (utilisation de modèles)
- 2. Quelques exemples
- 3. Un exemple détaillé de bilan carbone à l'échelle du territoire : ABC'terre
- 4. Synthèse des données sol disponibles
- 5. Conclusion




Méthodes d'estimation


<u>Méthodes directes:</u>
 échantillonnage,
 analyse, statistiques
 spatiales, temporelles

 Méthodes indirectes : application de modèles

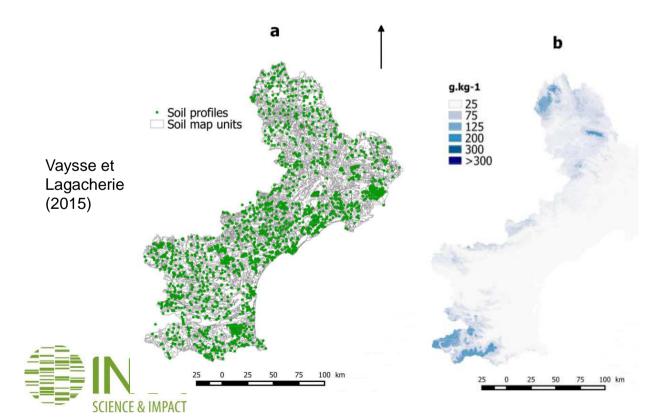
Modèles statistiques

Modèles mécanistes

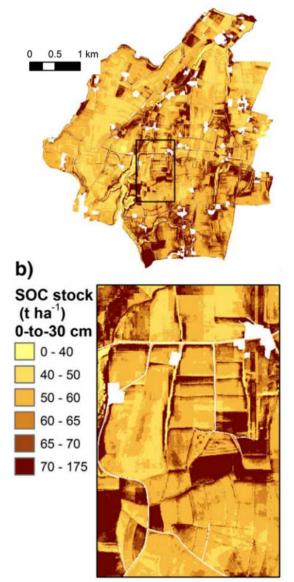
		<u> </u>			1		
	Factor value type	Level	Temper- ature regime	'96 IPCC default	Moisture Regime ¹	GPG revised default	Error ^{2,3}
	Land use (F _{LU})		Temperate	0.7,0.64	Dry	0.82	± 10% ± 12%
		Long- term	Temperate	0.7,0.0	Wet	0.71	
		cultivated	Tropical	0.6, 0.5	Dry	0.69	± 38%
			Tropical	0.0, 0.3	Wet	0.58	± 42%

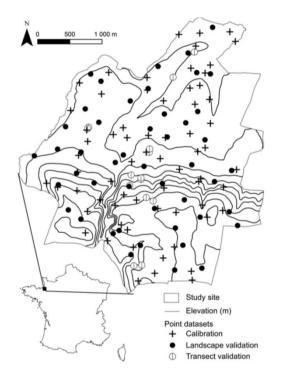
Règles empiriques

X				cartographie (où)	évaluation globale (combien)
k oc.	Méthodes directes				
St	Méthodes indirectes	règles empiriq	ues		
Δst		Modèles statis	tiques		
7		Modèles méca	anistes		


II. Quelques exemples pour illustrer les besoins en données

La cartographie numérique


4				cartographie (où)	évaluation globale (combien)
)Cr	Méthodes directes				
COCK	Méthodes indirectes	règles er	mpiriques		
		Modèles	statistiques	X	
		Modèles	mécanistes		



- Ajustement d'un modèle statistique sur des données ponctuelles complétées d'estimation des co-variables
- Prédiction par application du modèle sur les cartes des covariables
- 3. Validation
- Calcul des stocks par application d'une fonction de pedotransfert

La cartographie numérique

Lacoste et al. 2014

Approches empiriques : Tiers 1 et 2

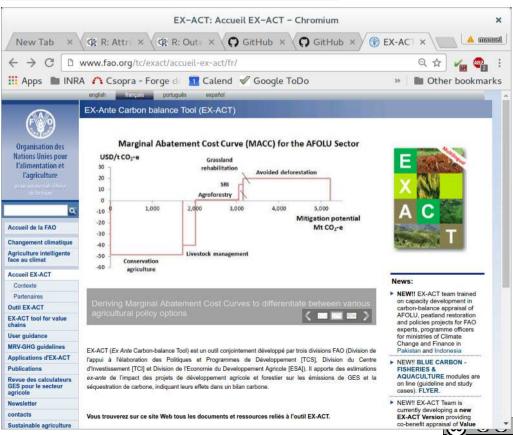
Méthodes directes

règles empiriques

Méthodes indirectes

Modèles statistiques

Modèles mécanistes


$$\Delta C_{CC_{Mineral}} = [(SOC_0 - SOC_{(0-T)}) \bullet A] / T$$

$$SOC = SOC_{REF} \bullet F_{LU} \bullet F_{MG} \bullet F_{I}$$

Echelles locales : Ex-act (FAO), Diaterre (ADEME) = outils de prospective et de construction de scénarios

Nécessite des données de gestion

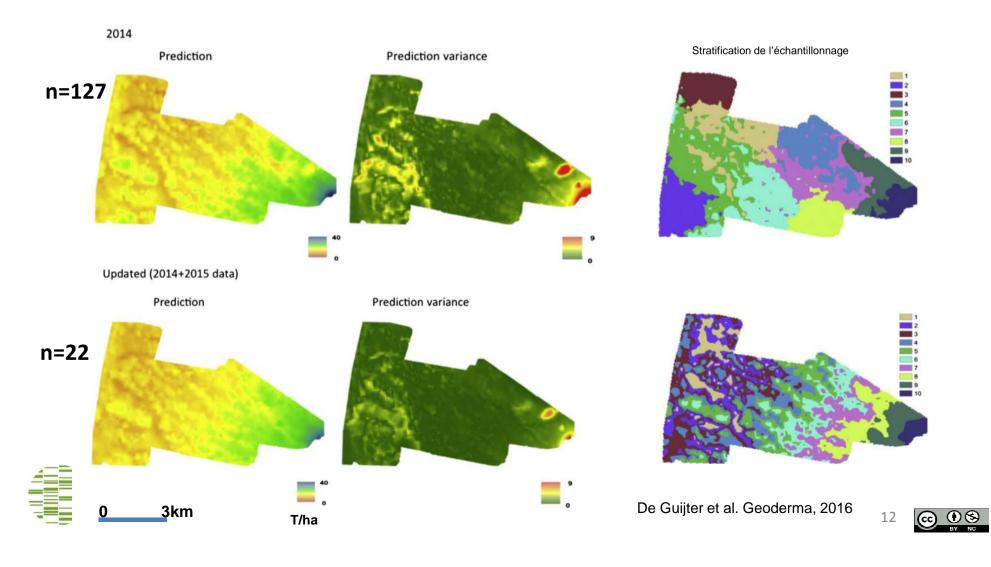
Les suivi des stocks par mesure sur le terrain

Méthodes directes

Méthodes indirectes

Modèles statistiques

Modèles mécanistes



Sur une exploitation agricole

- Comment optimiser l'échantillonnage pour diminuer l'incertitude et maximiser le gain (=prix pour une tonne de carbone évitée x tonnes de carbone stocké coûts de mesure)?
- Mise à profit de cartes du carbone organique des sols pour stratifier l'échantillonnage

Application d'un modèle mécaniste

 $\begin{array}{c} \text{stock et} \\ \Delta \text{Stock} \end{array}$

					évaluation globale (combien)
	Méthodes directes				
ADOUGE	Méthodes indirectes	règles en	npiriques		
		Modèles	statistiques		
7		Modèles	mécanistes	X	X

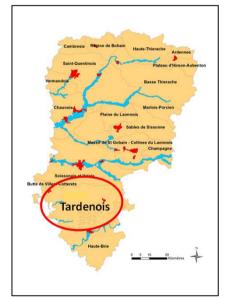
Le(s) projet(s) ABC'terre

http://www.agro-transfert-rt.org/publications/colloques/colloque-cloture-abcterre-attenuation-du-bilan-de-gaz-a-effet-de-serre-agricole-integrant-le-carbone-du-sol-sur-un-territoire/

La méthode ABCTerre (APR ADEME - REACCTIF -2012)

Deux étapes du diagnostic territorial

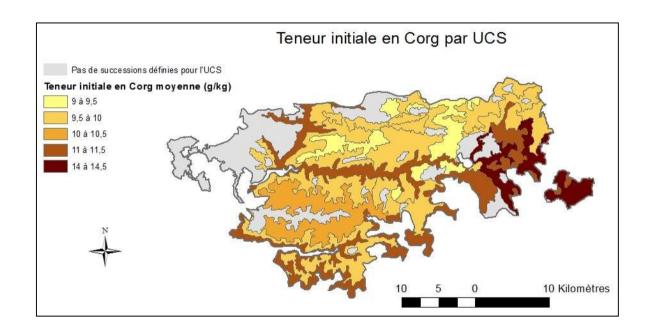
- cartographie des **stocks** actuels de Carbone dans les sols agricoles
- diagnostic spatialisé des émissions liées au C des sols (Δstocks)


Une approche reposant à la fois

- sur des données sol
- sur des modèles

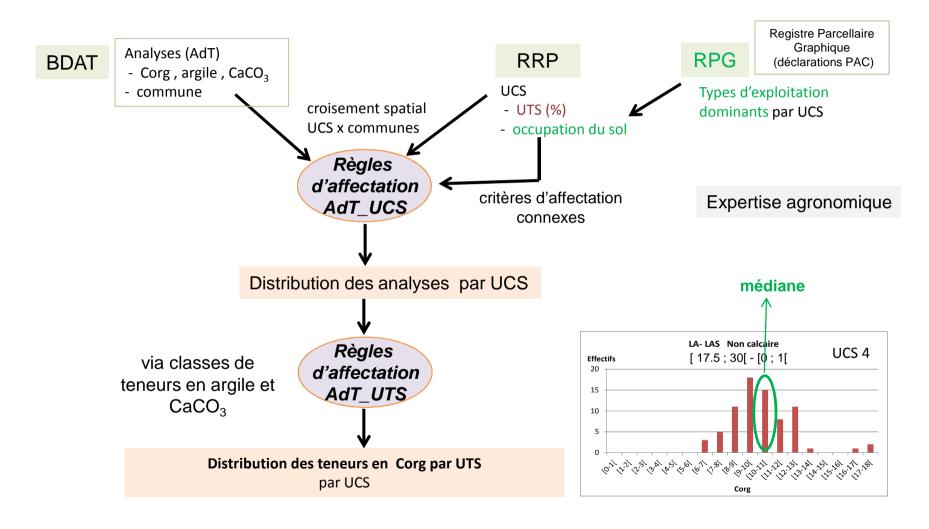
Exemple d'application sur le territoire d'une Petite Région Naturelle (Tardenois- Aisne)

Types d'exploitations :


« betteravier», « céréaliers », « diversifiés », « éleveurs » **Sols**: limons et limons sableux profonds et argilo-calcaires peu profonds

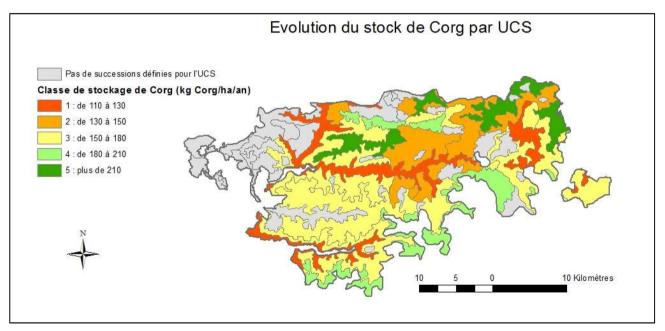
Estimation des teneurs en Carbone organique actuelles par type de sol et par UCS Représentation cartographique par UCS (moyenne pondérée)

UCS : Unité Cartographique de Sol


Sources: BDDSol – Chambre d'Agriculture de l'Aisne; RRP Aisne version intermédiaire -LaSalle Beauvais; BDAT

Exploitation de la BDAT couplée au RRP, avec prise en compte partielle de l'occupation du sol

règles empiriques

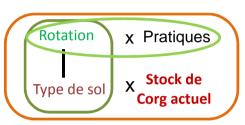


Diagnostic de l'évolution à long terme des stocks de C organique des sols cultivés Estimation des flux annuels moyens de Corg sur 20 ans (kg Corg/ha/an)

Représentation cartographique des résultats

UCS : Unité Cartographique de Sol

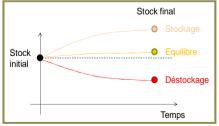
Sources: BDDSol – Chambre d'Agriculture de l'Aisne; RRP Aisne version intermédiaire -LaSalle Beauvais; BDAT



Utilisation du modèle de bilan humique AMG via l'outil SIMEOS-AMG pour simuler l'évolution à long terme des stocks de Corg

modèle mécaniste

Inventaire spatialisé des combinaisons


Bases de données nationales spatialisées et l'outil RPG-Explorer

Bases de données et expertise locales

BDAT RRP RPG

Simulations de l'évolution du stock de C organique des Sols

- Bilan de C org
- Evolution à LT de la teneur en C org dans la couche de sol travaillée

Quelles données et méthodes pour quels objectifs?

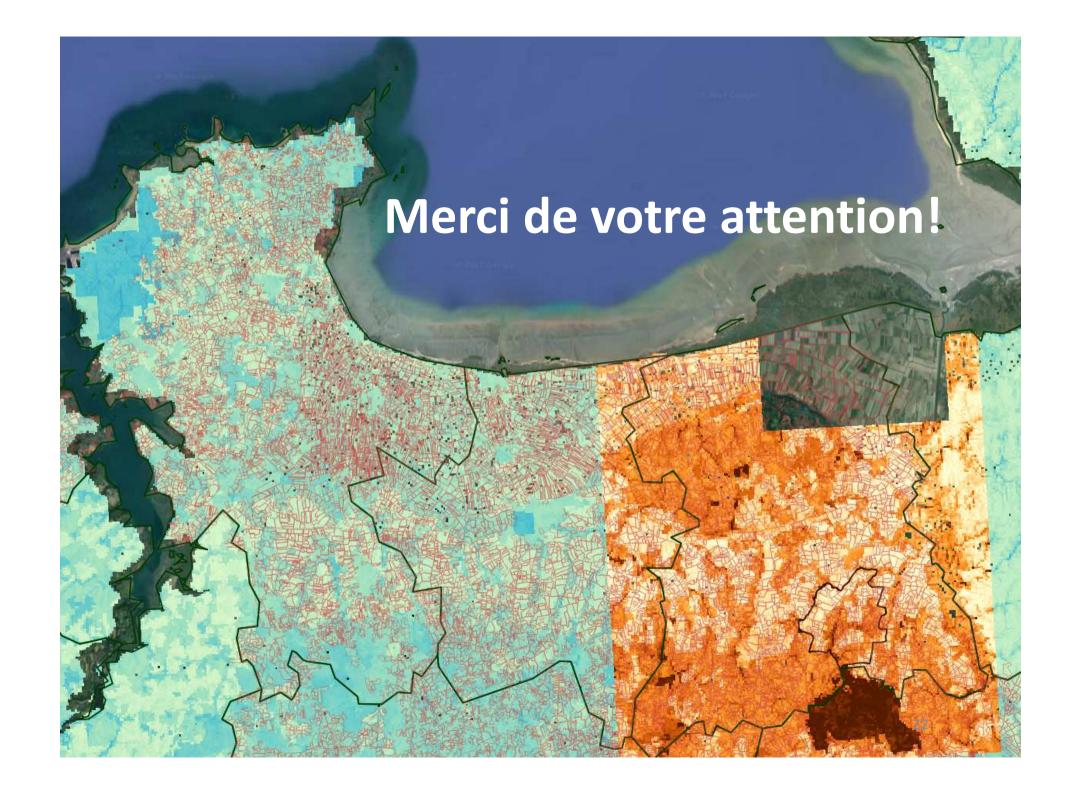
			cartographie (où)	évaluation globale (combien)
	Méthodes directes			**(A)
Stock	Méthodes indirectes	règles empiriques	*	
Stc		Modèles statistiques	**	*
		Modèles mécanistes		
	Méthodes directes			*(A)
ck	Méthodes indirectes	règles empiriques	*	*
$\Delta \mathrm{Stock}$		Modèles statistiques	**	*
		Modèles mécanistes	**	*

			données ponctuelles	données surfaciques	covariables
2	Méthodes directes		(A)	NA	IGCS, X
000	Méthodes indirectes	règles empiriques	NA	IGCS	X
		Modèles statistiques	IGCS, RMQS	BDAT, IGCS	X
		Modèles mécanistes	NA	NA	NA
2	Méthodes directes		(A)	NA	GSM, X
		règles empiriques	NA	IGCS	X
	Méthodes indirectes	Modèles statistiques		BDAT	X
		Modèles mécanistes		IGCS, BDAT,GSM	X

GSM : cartographie numérique des sols (global soil map) **X** : divers non précisé (A) : acquisition à prévoir * : niveau de comptabilité **NA** : ne s'applique pas

Conclusion (1/2)

- Si l'objectif est une comptabilité globale, la meilleure approche est sans doute l'approche directe (à ajuster en fonction des coûts, études complémentaires nécessaires?)
- Si l'objectif est une compréhension des mécanismes et la prise en compte de leurs effets, les modèles (statistiques ou mécanistes) semblent indispensables
- Les approches sont complémentaires



Conclusion (2/2)

- => Développer des approches mixtes associant nouvelles mesures directes et modélisation
- En matière de modélisation, les données de gestion sont indispensables (=> apports récents de la télédétection)
- Capitaliser (et harmoniser), au sein de systèmes d'information, toute nouvelle production de données collectées dans le cadre d'études territoriales
 - => permettre à la recherche de disposer de jeux de données complémentaires à ceux existants pour améliorer les méthodes de comptabilisation
 - => faciliter la mise en œuvre de ces méthodes

